Acidic amino acids flanking phosphorylation sites in the M2 muscarinic receptor regulate receptor phosphorylation, internalization, and interaction with arrestins.
نویسندگان
چکیده
The studies reported here address the molecular events underlying the interactions of arrestins with the M(2) muscarinic acetylcholine receptor (mAChR). In particular, we focused on the role of receptor phosphorylation in this process. Agonist-dependent phosphorylation of the M(2) mAChR can occur at clusters of serines and threonines at positions 286-290 (site P1) or 307-311 (site P2) in the third intracellular loop (Pals-Rylaarsdam, R., and Hosey, M. M. (1997) J. Biol. Chem. 272, 14152-14158). Phosphorylation at either P1 or P2 can support agonist-dependent internalization. However, phosphorylation at P2 is required for receptor interaction with arrestins (Pals-Rylaarsdam, R., Gurevich, V. V., Lee, K. B., Ptasienski, J. A., Benovic, J. L., and Hosey, M. M. (1997) J. Biol. Chem. 272, 23682-26389). The present study investigated the role of acidic amino acids between P1 and P2 in regulating receptor phosphorylation, internalization, and receptor/arrestin interactions. Mutation of the acidic amino acids at positions 298-300 (site A1) and/or 304-305 (site A2) to alanines had significant effects on agonist-dependent phosphorylation. P2 was identified as the preferred site of agonist-dependent phosphorylation, and full phosphorylation at P2 required the acidic amino acids at A1 or their neutral counterparts. In contrast, phosphorylation at site P1 was dependent on site A2. In addition, sites A1 and A2 significantly affected the ability of the wild type and P1 and P2 mutant receptors to internalization and to interact with arrestin2. Substitution of asparagine and glutamine for the aspartates and glutamates at sites A1 or A2 did not influence receptor phosphorylation but did influence arrestin interaction with the receptor. We propose that the amino acids at sites A1 and A2 play important roles in agonist-dependent phosphorylation at sites P2 and P1, respectively, and also play an important role in arrestin interactions with the M(2) mAChR.
منابع مشابه
MINIREVIEW—MOLECULAR PHARMACOLOGY IN CHINA Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model
Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and interna...
متن کاملTwo homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor.
Short term exposure of m2 muscarinic acetylcholine receptors (m2 mAChRs) to agonist causes a rapid phosphorylation of the activated receptors, followed by a profound loss in the ability of the m2 mAChR to activate its signaling pathways. We have used site-directed mutagenesis to identify two clusters of Ser/Thr residues in the third intracellular loop of the m2 mAChR that can serve as redundant...
متن کاملPhosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.
Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and interna...
متن کاملAgonist-receptor-arrestin, an alternative ternary complex with high agonist affinity.
The rapid decrease of a response to a persistent stimulus, often termed desensitization, is a widespread biological phenomenon. Signal transduction by numerous G protein-coupled receptors appears to be terminated by a strikingly uniform two-step mechanism, most extensively characterized for the beta2-adrenergic receptor (beta2AR), m2 muscarinic cholinergic receptor (m2 mAChR), and rhodopsin. Th...
متن کاملPhosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle.
The 27-kDa heat shock protein (HSP27) is expressed in a variety of tissues in the absence of stress and is thought to regulate actin filament dynamics, possibly by a phosphorylation/dephosphorylation mechanism. HSP27 has also been suggested to be involved in contraction of intestinal smooth muscle. We have investigated phosphorylation of HSP27 in airway smooth muscle in response to the muscarin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 46 شماره
صفحات -
تاریخ انتشار 2000